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Abstract
Lung cancer, of which non-small lung cancer is the most common subtype, 
represents the leading cause of cancer related-death worldwide. It is now 
recognized that a significant proportion of these patients present alterations in 
certain genes that drive oncogenesis. In recent years, more of these so-called 
oncogenic drivers have been identified, and a better understanding of their 
biology has allowed the development new targeted agents. This review aims to 
provide an update about the current landscape of driver mutation in non-small-
cell lung cancer. Alterations in Kirsten rat sarcoma, epidermal growth factor receptor, 
MET, anaplastic lymphoma kinase, c-ROS oncogene 1, v-raf murine sarcoma viral 
oncogene homolog B, neurotrophic receptor tyrosine kinase, human epidermal growth 
factor 2, neuregulin-1 and rearranged during transfection are discussed, as well as 
agents targeting these alterations. Current standards of treatment as well as 
promising future strategies are presented. Currently, more than fifteen targeted 
agents are food and Drug administration-approved for seven oncogenic drivers in 
non-small-cell lung cancer, highlighting the importance of actively searching for 
these mutations. Continuous and future efforts made in defining the biology of 
each of these alterations will help to elucidate their respective resistance 
mechanisms, and to define the best treatment strategy and therapeutic sequence.
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Core Tip: We have reviewed the current literature about the impact of detecting 
oncogenic mutations in non-small cell lung cancer (NSCLC). Over the years, the 
adoption of next generation sequencing has rendered it easier to determine and detect 
possible oncogenic driver mutations, leading to the development of several targeted 
therapies. The clinical impact and benefit for patients is important in terms of quality 
and quantity of life. These therapies are more effective than standard chemotherapy 
treatment. We have reviewed the data to explain what has been done, is ongoing and 
shall be done in the future for patients with oncogene-driven NSCLC.
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INTRODUCTION
Lung cancer is the most common malignancy and the leading cause of cancer related 
deaths worldwide (18.4% of total cancer deaths), with non-small cell lung cancer 
(NSCLC) being the most common subtype, accounting for approximately 85% of all 
diagnosed cases[1]. The majority of NSCLC patients display advanced disease when 
diagnosed and thus have poor prognosis[2]. It is well established that acquired genetic 
alterations in certain driver genes result in tumor growth and invasiveness, and that 
patients harbouring certain mutations may benefit from targeted therapies[3] (Figure 1). 
Indeed, a randomized clinical trial reported that advanced NSCLC patients harbouring 
activating mutations in the epidermal growth factor receptor (EGFR), one of the major 
oncogenic drivers of NSCLC, exhibited longer progression-free survival (PFS) when 
treated with a tyrosine kinase inhibitor (TKI), gefitinib, compared to those treated with 
standard platinum-based chemotherapy[4]. However, those who were treated with TKI 
drugs can acquire secondary resistance mutations, in which case a new treatment 
regimen is needed to maintain therapeutic effects[5,6]. In addition to EGFR, NSCLC 
patients carrying anaplastic lymphoma kinase (ALK) or c-ROS oncogene 1 (ROS1) 
rearrangement were shown to respond well to a different TKI drug[7-9], crizotinib, while 
v-raf murine sarcoma viral oncogene homolog B (BRAF) mutated NSCLC patients can be 
treated with a combination of BRAF inhibitors, dabrafenib and trametinib[10]. These 
findings suggest that the identification of mutation profiles of NSCLC is critical in 
order to prescribe suitable TKI therapy as well as elucidate the molecular basis of drug 
resistance to provide timely treatment adjustment. Since 2018, the American Society of 
Clinical Oncology (ASCO) has recommended routine mutation testing for driver genes 
including EGFR, ALK, ROS1 and BRAF in clinical practice for patients with metastatic 
NSCLC. Although there are currently no targeted drugs for Kirsten rat sarcoma (KRAS) 
or neuroblastoma rat sarcoma (NRAS) mutated NSCLCs[11,12], mutation testing for these 
genes has also been recommended due to their proven impact on clinical outcomes of 
NSCLC patients[13]. This review aims to provide an update about the impact and 
importance of detecting mutations in oncogenes in patients with advanced NSCLC.

KRAS
The rat sarcoma (RAS) genes (KRAS, NRAS, Harvey rat sarcoma viral oncogene homolog) 
represent the most frequent human oncogenes. Up to 30% of NSCLC harbor a 
mutation in the KRAS oncogene, making KRAS the most commonly detected 
oncogenic driver in lung cancer[11]. The KRAS proteins belong to the small guanosine 
triphosphate (GTP)ase family, involved in intracellular signaling. In response to 
extracellular signaling, KRAS proteins switch between two states: The GTP-bound 
“on-state” and general dental practitioner-bound “off-states”. When “on”, KRAS 
activates downstream signaling pathways, mainly the mitogen activated protein 
kinase and extracellular signal regulated kinase (MAPK/ERK) and phosphatidy-
linositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) C1 signaling 
pathways, ultimately promoting cellular division and proliferation.
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Figure 1 Incidence of oncogenic drivers in non-small cell lung cancer. KRAS: Kirsten rat sarcoma; EGFR: Epidermal growth factor receptor; ALK: 
Anaplastic lymphoma kinase; HER2: Human epidermal growth factor 2; ROS1: c-ROS oncogene 1; NTRK: Neurotrophic receptor tyrosine kinase; RET: Rearranged 
during transfection; NRG1: Neuregulin-1.

Some KRAS mutations, such as those in exons 2 and 3, which prevent GTP 
hydrolysis and prevent switching KRAS signaling off, result in a constitutive 
activation of KRAS proteins. KRAS mutation is more frequent in adenocarcinoma, and 
can be detected by next generation sequencing (NGS)[14]. The most common mutations 
involve a substitution in the codon 12 or 13. The KRAS G12C mutation found in 
approximately 13% of NSCLC[15], is of particular interest, as it has become a therapeutic 
target. It is more frequently detected in smokers, while KRAS G12D is more common 
among non-smokers[11]

Currently, the standard of care for KRAS-mutated NSCLC follows that of non-
oncogene-driven NSCLC, consisting of immunotherapy with or without platinum-
based chemotherapy.

Two Specific KRAS G12C TKIs have emerged, sotorasib (AMG510) and adagrasib 
(MRTX849). In the Codebreak100 phase I/II trial, 59 KRAS G12C mutated, previously 
treated advanced or metastatic NSCLC patients received sotorasib orally. The objective 
response rate (ORR) was 32.2%, with a median duration of response of 10.9 mo[16].

Sotorasib is currently being tested in the randomized phase III, Codebreak200 trial, 
vs docetaxel in the second-line setting (NCT04303780). The primary endpoint is PFS, 
with overall survival (OS) as a secondary endpoint[17].

Adagrasib represents another specific KRAS G12C TKI. In the phase I/II KRYSTAL-
1 trial[18], 79 patients with pre-treated NSCLC received adagrasib 600 mg twice daily. 
Among the 51 patients evaluable for response, an ORR of 45% was observed. The most 
frequent side effects included nausea, vomiting and diarrhea, mostly grade 1-2.

Others KRAS G12C inhibitors are currently being tested in phase I/II clinical trials: 
JNJ-74699157[19] and Gadolinia-Doped Ceria-6036[20]. As fewer than 50% of patients 
initially respond to sotorasib or adagrasib, we can assume that some patients present 
intrinsic resistance to KRAS G12C inhibition. This hypothesis is supported by 
preclinical evidence demonstrating resistant cell lines[21]. One explanation is that tumor 
cells may not exclusively rely on the RAS pathway for survival and proliferation[22]. As 
an example, RAS-independent activation of the PI3K/AKT/mTORC1 signaling 
pathway could be associated with resistance to KRAS inhibition[23]. Another 
mechanism of resistance could be the heterogeneous distribution of KRAS mutations 
in different tumor sites within the same patient[24]. Adaptive resistance also emerges 
under the selective pressure of KRAS TKIs. One mechanism of adaptive resistance 
could consist in the amplification of upstream drivers, such as receptor tyrosine 
kinases/ Src homology 2 domain-containing phosphatase 2 (RTKs/SHP2), that result 
from KRAS inhibition. Indeed, the diminution of ERK activity driven by KRAS G12C 
TKIs has been shown to suppress the ERK-mediated feedback inhibition of 
RTKs/SHP2, further activating N-Ras, H-Ras, and K-RasG12C, and ultimately 
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restoring the activity of the MAPK/ERK signaling[21,25].
Although clinical data are scarce, it is likely that KRAS G12C inhibitors are not 

effective in the majority of the patients harboring KRAS G12C mutations. There has 
been a growing interest to combine the KRAS G12C inhibitors with targeted agents or 
immune checkpoint inhibitors (ICIs)[26]. Based on preclinical data discussed above, 
adagrasib is currently being tested in association with the SHP2 inhibitor TNO155 in 
early clinical phases[27]. Associations with ICIs also represent an interesting approach, 
as in some preclinical models, KRAS G12C positive tumor cell lines exhibit an 
immunosuppressive environment that is disrupted by KRAS inhibition[28,29].

Besides those targeting G12C, other KRAS inhibitors are in development, such as 
MRTX1133, a KRAS G12D inhibitor currently in investigational new drug enabling 
studies[30], or BI 1701963, a molecule targeting son of sevenless-1, an activator of KRAS, 
which could allow inhibition of the KRAS pathway regardless of the mutation[31].

Finally, other approaches targeting KRAS include an mRNA vaccine targeting 
KRAS mutant cells, a strategy that has already entered a phase I clinical trial[32], as 
preclinical data revealed an immune cell response in animal models[33].

EGFR
EGFR is one of the four members of the human epidermal growth factor (HER) family 
transmembrane receptors (HER1/EGFR, HER2, HER3, and HER4). Each HER receptor 
is an inactive monomer that dimerizes with a receptor of the same type or with 
another member of the HER family in response to ligand binding. The receptor 
activation triggers a complex downstream signaling network which leads cell 
replication[34]. The dysregulated receptor function or disruptions in any downstream 
EGFR processes may result in cell transformation and malignancy.

The prevalence of the mutation in the EGFR oncogenes is 50% among Asian patients 
with lung adenocarcinoma and 15% among Western patients[35]. Mutations leading to 
excessive EGFR activity are most common among non-smokers, young, female, Asian 
lung cancer patients[36]. Exon 19 deletions or L858R point mutations in exon 21 account 
for 90% percent of the activating mutations in the tyrosine kinase domain of EGFR, 
resulting in constitutional activation of EGFR without ligand-induced stimulation, 
thus promoting cell proliferation, survival, and dissemination[37,38].

EGFR mutations can be detected by immunohistochemistry (IHC) or NGS. TKIs are 
the standard front-line therapy for metastatic EGFR mutant NSCLC for a decade, with 
three generations of TKIs that demonstrated better outcomes and lower toxicity 
compared to standard chemotherapy[39], with a median PFS of 11.0 mo (gefitinib or 
erlotinib) vs 5.6 mo (chemotherapy)[40]. To date, there are five United States Food and 
Drug Administration (FDA)-approved TKIs as the standard treatment for patients 
with activating EGFR mutations in NSCLC, including first-generation gefitinib and 
erlotinib, second-generation afatinib and dacomitinib, and third generation 
osimertinib[41]. However, it has been shown that resistance systematically develops to 
those treatments[42,43], mediated by mechanisms such as T790M secondary mutations, 
activation of other EGFR pathways, development of concurrent mutations or 
histological transformation. The T790M exon 20 mutation is rarely found in EGFR TKI-
naive disease but is the most frequent cause of resistance to first- and second-
generation EGFR TKIs (50%-60% of cases)[44] possibly by the presence of a mutated 
clone before treatment, which would be free to grow into the dominant clone under 
selective TKI pressure. It is the indication for which osimertinib, an EGFR-TKI that 
selectively inhibits both EGFR-TKI-sensitizing and EGFR T790M resistance mutations, 
was first developed. It improves outcomes in second-line after disease progression 
with T790M mutations[44,45], as well as in the front-line setting (PFS 18.9 mo vs 10.2 mo; 
OS 38.6 mo vs 31.8 mo) with an improved safety profile[43,46].

In order to improve outcomes of EGFR mutant NSCLC patients, combination 
therapy of EGFR TKIs with other agents have been tested, with interesting 
perspectives. A meta-analysis was conducted regarding the efficacy and safety of 
vascular EGFR inhibitors in combination with chemotherapy for patients with 
advanced NSCLC showing improved PFS, ORR and disease control rate, but without 
an impact on OS[47]. Results are pending from the Japanese phase II study comparing 
osimertinib alone vs osimertinib plus chemotherapy in second-line setting for patients 
with T790M mutation. Also, the phase III FLAURA2 study started recruiting in 2019, 
studying osimertinib with or without platinum-pemetrexed chemotherapy as first-line 
treatment in EGFR mutated advanced patientswith NSCLC (ClinicalTrials.gov 
Identifier: NCT04035486). Numerous studies are ongoing regarding the best sequence 
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to use. At this time, the combination of chemotherapy and TKIs is not standard 
practice.

MET 
The proto-oncogene MET is located on chromosome 7q21-q31. It encodes for a 
transmembrane receptor (c-Met or MET) also known as hepatocyte growth factor 
receptor. This tyrosine kinase receptor activates downstream RAS/ERK/MAPK, 
PI3K/AKT, Wnt/β-catenin, and signal transducer and activator of transcription 
(STAT) signaling pathways, that can drive cell proliferation, survival, migration, 
invasion, angiogenesis, and transition from epithelial to mesenchymal[48]. MET 
dysregulation encompasses a heterogeneous array of alterations, with two main 
subgroups: MET amplifications and MET exon 14 mutations, leading to prolonged 
activation of the cellular MET receptor and downstream proliferation pathways[11]. 
Regarding exon 14, aberrant splicing and skipping of exon in the messenger RNA 
transcript can result from somatic missense mutations, insertions, deletions, and 
concomitant insertions and deletions.

MET alterations are found in fewer than 5% of patients with NSCLC, mainly 
adenocarcinoma, often with concurrent mutations (i.e., EGFR, ALK). Detection of MET 
amplification is assessed by fluorescence in situ hybridization (FISH), and exon 14 
skipping is most often completed through DNA or RNA NGS.

Due to the various diversity of MET dysregulation, there was a need to identify the 
oncogenic role of each type of MET alteration and defining the adequate targeted 
therapy. Over the last 20 years, several agents have been developed to target MET 
such as multikinase MET inhibitors (crizotinib, cabozantinib, MGCD265, AMG208, 
altiratinib, golvatinib), selective MET inhibitors (capmatinib, tepotinib, tivantinib) and 
monoclonal antibody (onartuzumab, emibetuzumab, ficlatuzumab, rilotumumab). A 
retrospective registry (IMMUNOTARGET) of advanced NSCLC patients who received 
immunotherapy showed that only 16% of them demonstrated a partial response, with 
a short median PFS of 3.4 mo[49]. Small cohorts showed that MET TKIs offer a 
promising treatment option in patients with exon 14 skipping with response rates from 
25% to 68%, and a median duration of response of 9 to 16 mo. In the retrospective data 
analysis of a phase 1 PROFILE 1001 study, data supported that MET exon 14 skipping 
in NSCLC confers sensitivity to direct MET inhibitors with a median OS of 24.6 mo vs 
8.1 mo among patients receiving crizotinib compared with those who did not[50]. In 
patients with advanced or metastatic NSCLC with a confirmed MET exon 14 skipping 
mutation, the use of tepotinib, a highly selective oral MET inhibitor, was associated 
with a partial response in approximately half the patients (ORR 46%, with a median 
duration of response of 11.1 moin a recent phase 2 study[51]. In advanced MET exon 14 
skipping NSCLC, capmatinib showed substantial antitumor activity particularly in 
previously untreated patients (ORR 68%), with a median duration of response of 12.6 
mo[51]. Limited efficacy was observed in previously treated patients with MET 
amplification (ORR 7 to 12% of patients with capmatinib).

ALK
ALK is a transmembrane receptor tyrosine kinase that can activate multiple signaling 
cascades such as the PI3K-AKT, Crkl-C3G, MAP kinase kinase kinase 2/3-mitogen-
activated protein kinase kinase (MEK)5-ERK5, Janus kinase (JAK)-STAT, and MAPK 
pathways. Its involvement is known in development, then subsequently silenced in 
adult tissues. However, several ALK gene alterations have been identified in tumors, 
including point mutations, deletions, and rearrangements leading to ALK reactivation. 
Various ALK-fusion proteins have been described that result from numerous 
chromosomal rearrangements, with formation of dimers by the amino-terminal 
portion of the ALK fusion proteins resulting in the activation of the ALK protein 
kinase domain that plays a key role in the tumorigenic process. The consequent ALK 
expression can activate multiple downstream known cancer signaling pathways 
[PI3K/AKT, JAK/STAT, and RAS/rapidly accelerated fibrosarcoma (RAF)/ 
MEK/ERK][52].

ALK rearrangements are detected in approximately 5% of advanced NSCLC[8], 2 to 
7% in all, up to 19% for stage IV. ALK alterations are mainly found in adeno-
carcinomas (97%), while squamous cell carcinomas comprise 3%[7]. ALK positivity is 
found in a fifth of never to light smokers with lung cancer. Methods of diagnosis can 
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include FISH, IHC, or NGS.
The superiority of the TKI, crizotinib, over chemotherapy in first-line ALK+ 

advanced NSCLC was proven in 2014, with an ORR of 74% vs 45%, PFS 10.9 mo vs 7 
mo, and 1-year survival 84% vs 79% (median OS not reached in the crizotinib 
group)[53]. However, resistance to treatment invariably develops, often with 
progression in the brain, motivating the development of new generations of TKI. 
Second- (alectinib, brigatinib, ceritinib) and third-generation (lorlatinib) TKIs have 
proven their efficacy, with the third-generation lorlatinib who led to a 72% 
improvement in PFS compared with crizotinib in first-line treatment[54]. After failure of 
second-generation ALK TKIs, concurrent administration of platinum/pemetrexed-
based chemotherapy with an ALK TKI shows efficacy in a recent retrospective study[55] 
(PFS 6.8 mo with the combination vs 3.2 mo for chemotherapy alone; suggesting a 
potential role for continued ALK inhibition. Some studies are currently underway, 
evaluating the addition of ceritinib to nivolumab (NCT02393625, completion June 
2021) or ceritinib with trametinib (NCT03087448, completion June 2022).

Recently, a next-generation ALK inhibitor, ensartinib, demonstrated promising 
efficacy in the first-line treatment for advanced disease in a preplanned interim 
analysis (phase III eXalt3 study), with a median PFS of 25.8 mo with ensartinib in the 
intent-to-treat population vs 12.7 mo with crizotinib) (NCT02767804, study completion 
March 2021). Another new ALK inhibitor, TQ-B3139, is being tested vs crizotinib in the 
first line setting (NCT04009317, completion April 2022).

ROS1
ROS1 encodes a tyrosine kinase receptor, belonging to the insulin receptor family, and 
structurally related to the ALK protein. Its natural ligand remains undefined.

ROS1 rearrangement was described in glioblastoma, before being recognized as a 
potential oncogenic driver in NSCLC[56]. Various ROS1 alterations have been described 
in cancers: overexpression, splice variants (usually leading to a truncated protein 
lacking the intracellular domain), amplification, mutations and finally fusions with 
another partner gene. In contrast to fusions, the pathogenic significance of other 
alterations is undetermined[57].

At the moment, ROS1 fusions have identified with 55 different partners genes in 
different cancer types, including more than 20 fusion partners in NSCLC. The CD74-
ROS1, EZR-ROS1, SDC4-ROS1 and SLC34A2-ROS1 fusion represent the most common 
rearrangements[58]. All resultant fusion proteins retain an intact ROS1 intracellular 
kinase domain which, as a result of the rearrangement, becomes constitutively 
activated. The activated kinase triggers intracellular signaling pathways, such as the 
RAS–RAF-MEK-ERK, PI3K-AKT-mTOR and JAK-STAT3 pathways, ultimately leading 
to cellular survival and division.

As with other common driver mutations, patients harboring a ROS1 rearrangement 
tend to be younger and more frequently non-smokers and Asian[56]. ROS1 is almost 
always found in adenocarcinoma subtypes, where it represents 1%-2% of the cases[59]. 
ROS1 alterations rarely occur with other driver mutations[60].

ROS1 rearrangement can be detected by FISH or NGS[14]. IHC is sensitive and can be 
used as a screening test. However, specificity remains poor and a positive result must 
be confirmed by FISH assays or NGS. A treatment decision should not be based on 
IHC results alone.

ROS1 rearranged NSCLC seem to have better response to chemotherapy, especially 
pemetrexed-based, when compared to both tumors with other driver mutations and 
wild-type tumors[61]. On the other hand, some data, although scarce, show modest 
response to ICIs[62].

Several tyrosine kinase inhibitors have shown clinical activity in ROS1-positive 
NSCLC. The phase I PROFILE 1001 trial of crizotinib included 50 patients with ROS1-
fusion NSCLC, among which an overall response rate of 72%, and a median PFS of 
19.2 mo were reported[63]. Importantly, more than 80% of patients had received at least 
one previous line of treatment. An updated analysis reported an impressive median 
OS of 51 mo[64]. Phases 2 trials in Europe and East Asia have consistently reported 
similar ORRs of 63%-69%[65,66]. In these studies, crizotinib demonstrated a favorable 
safety profile. However, crizotinib has limited intracranial activity. The central 
nervous system represents a common site of progression in ROS1-positive NSCLC 
treated with crizotinib[67]. Crizotinib should be avoided as a first-line agent in case of 
untreated brain metastasis.
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After progression on crizotinib, lorlatinib represents an option. It was evaluated in 
69 patients with ROS1-positive NSCLC[68]. In 40 patients that had received prior 
crizotinib, the ORR was 35%, with a median PFS of 8.5 mo. In 21 crizotinib-naive 
patients in the same study, lorlatinib demonstrated an ORR of 62%, with a median 
duration of response comparable to crizotinib of 25.3 mo and a median PFS of 19.3 mo. 
Lorlatinib also showed intracranial activity, with intracranial response rates of 50% 
and 64% in crizotinib pretreated and crizotinib-naïve patients respectively.

Ceritinib is a selective ALK inhibitor that also exhibits activity against ROS1 kinase. 
In a phase phase II trial involving 32 Asian patients with ROS1-rearranged NSCLC the 
ORR was 67%[69]. Interestingly, two patients that had received prior crizotinib 
experienced no response.

Entrectinib represents another tyrosine kinase inhibitor with activity against the 
ROS1 kinase. In a phase II study among 53 patients with ROS1-positive NSCLC, the 
majority of which had received previous platinum-based chemotherapy, the ORR 
reached 77%[70]. Responses seem durable, with median duration of response of 24.6 mo. 
Intracranial activity was also observed, with an intracranial ORR of 55%, with a 
median duration of response for central nervous system lesions of 12.9 mo.

Repotrectinib represents a next generation TKI targeting ROS1, ALK and 
tropomyosin receptor kinase (TRK). Its potency for ROS1 exceeds that of crizotinib by 
more than 90-fold. Reprotrectinib also shown early signs of efficacy against ROS1 
resistance mutations[70,71].

Resistance to TKIs ultimately arise in nearly all patients. Intrinsic resistance to ROS1 
inhibition implies solvent-front or gate-keeper point mutations in the ROS1 kinase 
domain, the most common being the ROS1 G2032R, that precludes binding to 
crizotinib[72]. To date, more than 20 mutations conferring resistance to various TKI have 
described[57]. Moreover, resistance to ROS1 inhibition may probably arise from the 
activation of parallel signaling pathways such as KRAS, BRAF or MET. Emergence of 
BRAF and KRAS activating mutations and MET-amplification in ROS1 positive 
NSCLC treated with crizotinib or lorlatinib have been described[73,74]. Upon 
progression, the role of sequencing ROS1 TKIs remains unclear.

BRAF
BRAF is an intracellular protein kinase that plays a relevant role in the MAPK/ERK 
pathway, including numerous proteins with kinase domains (RAF, MEK, ERK) that 
carry signal transduction from membrane receptors to DNA in the nucleus of the 
cell[75]. BRAF is an oncogene located on chromosome 7 involved in several cell 
functions, including growth, proliferation, survival and differentiation.

BRAF mutations are found in about about 5.5% of cancers, with almost 200 BRAF 
mutants and many RAF translocations identified in human cancers[76]. Those 
alterations generate structural modifications of the protein that are responsible for 
permanent activation of MAPK pathway and resistance to inhibitory feedback signals.

The frequency of BRAF mutations is about 5 to 8% in lung adenocarcinomas[10], with 
higher incidence in melanoma (50%), thyroid carcinoma (30% to 70%) and colorectal 
cancer (5% to 20%). Its presence predicts poor outcome for the latter three. While the 
V600E activating mutation is the most common BRAF variant found in solid tumors 
(90%), it only accounts for half of BRAF mutations in NSCLC. Non-V600E variants are 
more common in males, and all BRAF variant are more common among smokers. It is 
important to note that clinical characteristics of patients with NSCLC harboring BRAF 
mutation are difficult to clearly identify due to small numbers of patients in trials.

BRAF mutations can be detected by using immunohistochemistry for V600E 
exclusively or DNA sequencing on the tumor tissue for the two types.

The efficacy of ICIs is uncertain, and is based on conflicting retrospective data and 
case series, thus not routinely recommended. Therapies targeting BRAF mutations 
were developed for melanoma with great success, then used for NSCLC. For lung 
cancer, numerous small studies tested RAF inhibitors (vemurafenib, dabrafenib) alone 
or in combination with MEK inhibitors (trametinib, cobimetinib). Best responses were 
observed when treatment was combined, especially in V600E patients in first-line of 
dabrafenib-trametinib with a mOS of 24.6 mo[77]. Front-line use of double BRAF/MEK 
inhibition if V600E mutation is found in advanced NSCLC is now suggested in current 
guidelines. Other agents such as multikinase inhibitors sorafenib and dasatinib 
showed responses in case reports[78,79].

Combining MEK and BRAF inhibitors has proven to be more effective than single-
agents for the treatment of BRAF-mutant advanced tumors, but does not prevent the 
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emergence of resistance[79]. Indeed, studies on melanoma describe intrinsic adaptive 
(other pathways alteration) or acquired (de novo) resistance in BRAF mutated cancers 
treated with targeted inhibitors. Thus, further research is warranted to establish clear 
therapeutic algorithms.

NEUROTROPHIC RECEPTOR TYROSINE KINASE 
The three neurotrophic receptor tyrosine kinase (NTRK) genes (NTRK1, NTRK2 and 
NTRK3) encode tyrosine kinase receptors for neutrophins, involved in neuronal 
development, survival and proliferation[80,81].

Oncogenic fusions involving the NTRK genes (e.g., apposition of the 3′ region of the 
NTRK gene with the 5′ sequence of a fusion partner gene) occur across many cancer 
types[82]. More than 25 gene partners have been described[83]. Yet, all these fusions result 
in a constitutively activated and overexpressed TRK kinase, that activates downstream 
pathways involved in cellular proliferation, such as the MAPK and PI3K/AKT[84].

NTRK fusions are very frequent in a few rare cancer types: Secretory carcinoma, 
mammary analogue secretory carcinoma, infantile fibrosarcoma and cellular 
mesoblastic nephromas, in which they are detected in more than of 90% of patients[83]. 
On the other hand, the NTRK fusion occurs at a very low frequency in various 
common cancers types, such as colorectal, breast, thyroid and lung cancers. In the 
latter, it represents under 1% of cases[85,86].

NTRK fusion can be detected either by IHC, FISH or DNA-and RNA-based NGS. 
Pan-TRK IHC has been shown to have high specificity and sensitivity in the detection 
of fusion protein expression. RNA-based NGS is preferred to DNA-only based 
technique.

The European Society for Medical Oncology (ESMO) guidelines suggest using FISH 
testing (or real-time reverse transcription polymerase chain reaction) in tumors with 
highly prevalent NTRK fusions, as it probably represents the most cost-effective 
strategy. In situations where such alterations are uncommon, NGS technique should 
be used upfront if available or as a confirmatory test, after a positive IHC “screening 
test”. Using NGS upfront has the advantage to allow the detection of other potentially 
targetable molecular alterations.

Larotrectinib is an oral TRK inhibitor that has shown durable activity in NTRK 
positive advanced tumors. In an analysis of three phase I/II trials, the ORR among 
patient with TRK-fusion positive cancer was 79%, with 80% of responses ongoing at 12 
mo[15]. Among 12 patients with lung cancer, a similar response rate was reported (75%). 
The most frequent grade 3-4 adverse events related to larotrectinib were increased 
alanine aminotransferase, anemia, and decreased neutrophil count. Grade 3-4 adverse 
events occurred in 46% of patients.

Entrectinib represents another TRK inhibitor, also active for ROS1 and ALK, and 
specifically designed to cross the blood-brain barrier[87]. Entrectinib demonstrated an 
ORR of 57% in small non-randomized studies, among 54 patient with TRK-positive 
advanced tumors, including 10 patients with NSCLC (ORR 70% in the latter)[87]. The 
median overall duration of response was 10 mo. Of note, an objective intracranial 
response rate of 54.5% was reported in a cohort of 12 patients with NTRK fusion-
positive tumors with brain metastasis[88]. The most common adverse events reported 
with entrectinib (> 20% of patients) were fatigue, gastro-intestinal disorders, weight 
gain and cognitive impairment. While the most threatening serious adverse events 
consisted of congestive heart failure, QT prolongation, central nervous system effects, 
hepatotoxicity, and vision disorders.

Based on these results, both larotrectinib and entrectinib have been granted 
accelerated approval by the FDA for metastatic or unresectable NTRK-fusion positive 
solid tumors, that have progressed following treatment or have no satisfactory 
standard therapy[89,90].

Despite a prolonged response, resistance to larotrectinib and entrectinib is expected 
to emerge in most patients[83], via different mechanisms: Solvent-front mutations and 
xDFG substitution[91]. Larotrectinib (LOXO)-195 and repotrectinib represent second-
generation TRK-inhibitors, currently under development capable to overcome 
resistance to first-generation of TRK-inhibitors. LOXO-195 is a highly selective 
inhibitor of all 3 TRK kinases. LOXO-195 or selitrectinib was evaluated in a phase I 
trial and a FDA expanded access single patient protocol, including 31 patients in total, 
all of whom had received prior treatment with a TRK inhibitor[92]. Of note, 7 patients 
were pediatric. The most frequent treatment-emergent adverse events were dizziness 
(65%), ataxia (60%), nausea (50%), vomiting (40%), anemia (30%) and gait disturbance 
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(30%), with 5 double-lumen endobronchial tube (4 ataxia/dizziness) in total. Among 
the 29 patients evaluable for efficacy, an ORR of 34% was reported.

Repotrectinib[91] is another second-generation NTRK inhibitor, designed to 
overcome acquired resistance mutations to larotrectinib/entrectinib[93,94] Case reports 
showed partial response in patient presenting acquired resistance to larotrectinib or 
entrectinib[87]. Repotrectinib is currently being tested in phase I/II clinical trial 
(NCT03093116)[95].

HER2
The HER2/neu gene is located on the chromosome 17q12, and encodes the HER2 
protein, which belongs to the epidermal growth factor receptor (ERBB) family of 
tyrosine kinase receptors. Other members of the ERBB family include EGFR (ERBB-1), 
HER3 (ERBB3), and HER-4 (ERBB4). The ERBB receptors are transmembrane proteins, 
composed of an extracellular ligand binding domain, an α-helical trans membrane 
segment and an intracellular tyrosine kinase domain. Ligand binding induces receptor 
dimerization, and auto-phosphorylation and activation of the intracellular kinase 
domain[96]. Of note, no natural ligand of HER2 has been identified. Nevertheless, HER2 
can undergo dimerization with other ERBB receptors[97], and represents their preferred 
dimerization partner. The activated kinase domain that results then triggers 
downstream signaling pathways, such as MAPK, PI3K/AKT, protein kinase C and 
STAT, promoting cellular proliferation and inhibiting apoptosis[98]. Genetic alterations 
in HER2 can result in constitutive dimerization and activation of downstream 
signaling pathways, finally leading to uncontrolled cellular proliferation.

HER2 mutations is found in approximately 1%-3% of NSCLC, primarily in 
adenocarcinoma, in non-smokers and women[99]. Mutations usually consist of in frame 
insertions or point mutation in exon 20. On the contrary, HER2 amplification in 
NSCLC is not associated with benefit of anti-HER2 therapy[100].

Retrospective data indicate that HER2 targeted therapy present some degree of 
activity in HER2-mutated NSCLC. In a European cohort of 57 pre-treated HER2 
mutated NSCLC patients receiving trastuzumab-based regimen, an ORR of 50% was 
reported, with a PFS of 5.1 mo[101]. In a prospective phase II trial, the antibody-drug 
conjugate ado-trastuzumab emtansine demonstrated an ORR of 44% in NSCLC 
patients harboring HER2 mutations, with a median PFS of 5 mo[102]. The most common 
treatment-related adverse events included grade 1 or 2 infusion reactions, 
thrombocytopenia, and elevated aspartate aminotransferase or alanine amino-
transferase. No grade 4 or 5 adverse events were reported. More recently, the 
DESTINY-Lung01 trial evaluating the safety and efficacy of trastuzumab-deruxtecan, 
another antibody-drug conjugate targeting HER2, were presented at the ASCO 
meeting[103]. The DESTINY-Lung01 trial includes 2 cohorts: HER2 amplified (based on 
IHC) and HER2 mutated tumors[104]. Interim results concerning only the HER2 mutated 
population were reported. Of the 42 patients who received trastuzumab-deruxtecan, 
with a median of 2 prior treatment lines, the confirmed ORR was 61.9%, with a median 
duration of response not reached at data cut-off, and a median PFS estimation of 14 
mo. However, toxicity was not negligible, as 64.3% of patients presented grade 3 or 
more adverse events (52.4 % drug-related). Of note, 11.9% of developed drug-related 
interstitial lung disease, all grade 2. Treatment related adverse events led to treatment 
interruption, dose reduction or treatment cessation in 59.5%, 38.1% and 23.8% of 
patients respectively. The randomized phase II DESTINY-Lung02 trial (NCT04644237) 
will compare a lower dose regimen of 5.4 mg/kg every 3-wk (Q3W) to the 6.4 mg/kg 
Q3W regimen used in DESTINY-Lung01 trial[105].

NEUREGULIN-1
The neuregulin-1 (NRG1) gene is located on the long arm of chromosome 10 (10q23.1 
region) and encodes a growth factor belonging to the complex family of proteins called 
heregulins, structurally related to the stimulation of ERBB receptors tyrosine kinase 
activity and EGF signals[106]. NRG1-receptor binding activates the ERBB2-ERBB3 
heterocomplex and controls proliferation, differentiation, and survival in both normal 
and tumor cells through the predominant signaling cascades PI3K-AKT and MAP 
kinase[107].
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NRG1 oncogenic gene rearrangements or fusions are rare, with an incidence of 0.2% 
on a wide retrospective molecular profiling that tested over 21’850 solid tumors[108]. 
They have been identified across a wide range of tumors including NSCLC (especially 
mucinous adenocarcinoma subtype), gallbladder cancer, pancreatic cancer, renal cell 
carcinoma, ovarian cancer and hepatic cholangiocarcinoma[109].

Detection of NRG1 gene fusions in solid tumors are made through RNA NGS[110]. 
NRG1 aberrations appear to be mutually exclusive with oncogenic alterations in EGFR, 
KRAS, ALK, ROS1, and rearranged during transfection (RET).

NRG1 was first described in NSCC in 2014[110]. Invasive mucinous adenocarcinoma 
(IMA), representing approximately 5% of lung adenocarcinomas, are known to be 
more aggressive than more common types, such as acinar or papillary adeno-
carcinoma. KRAS mutations had been the only oncogenic driver commonly detected in 
IMAs (in 50%–80% of cases), but CD74-NRG1 fusions are now detected in 14.7% of 
KRAS negative IMAs. NRG1 positivity confers worse outcomes in lung 
adenocarcinoma in retrospective data[111]. Given the potential therapeutic implications 
of this genetic alteration, the interest in evaluating the prevalence of NRG1 fusions has 
increased over the last five years.

The use of afatinib (tyrosine kinase inhibitor, targeting ERBB) showed interesting 
results in case reports for the treatment of NRG1 fusion-positive in cancers of lung (
SDC4-, SLC3A2- and CD74-NRG1 gene fusion) and hepatocellular (ATP1B1-NRG1 
gene fusion) origin[112]. Further studies are ongoing.

RET
The RET gene, located on the chromosome 10 (10q11.2), encodes a tyrosine kinase 
receptor located to the cell surface. Its intracellular kinase domain shares 37% 
homology with the ALK kinase domain[113]. RET is a receptor for Glial Cell Line-
Derived neurotrophic factor (GDNF), a family extracellular signaling molecules 
notably involved in neuronal development[114]. The binding of GDNF to a co-receptor 
GDRalpha and then to RET, leads to a RET-dimerization and further autopho-
sphorylation of the kinase domains. This activates the intracellular signal transduction 
process, notably the RAS, MAPK/ERK, PI3K/AKT and JAK/STAT pathways[113]. RET 
is normally involved in enteric nervous system and urogenital tract development. RET 
loss of function is associated with Hirschprung disease[115], and activating mutations to 
MEN-2 syndrome[116]. Rearrangements of the RET gene (e.g., the apposition of the C-
terminal region of RET protein with the N-terminal region of another protein) can 
induce a constitutive activation of the RET kinase.

Rearrangements in RET with various partners have been described, the most 
common in NSCLC being KIF5B and CCDC6[117]. They have been identified in 1%-2% 
of lung adenocarcinomas, more often in never smoker and younger patients[113]. IHC is 
probably unreliable for the detection of RET-rearrangements, and FISH or NGS are 
preferred[113].

The phase I/II LIBRETTO 001 trial[118] evaluated selpercatinib in NSCLC patients. It 
showed an ORR of 64% in 105 patients previously treated with platinum-based 
chemotherapy and 85% in previously untreated patient (39 patients). Median duration 
of response was 17.5 mo in previously treated patients. Interestingly, among the 11 
patients with central nervous system disease, 91% had an intracranial response.

Following these results, selpercatinib was granted accelerated approval by the 
FDA[119]. Selpercatinib is currently being evaluated in phase III, vs platinum-based 
chemotherapy +/- pembrolizumab, in the LIBRETTO-431 trial[120].

Pralsetinib (BLU-667), another selective RET inhibitor has also been granted 
accelerated approval from the FDA based on the results of the ARROW-study 
(NCT03037385), a basket trial in which patients with RET-fusions positive cancer 
received pralsetinib 400mg orally once daily. Among 89 patients with RET-fusion 
positive NSCLC pretreated with platinum-based chemotherapy, ORR was 57%, with 
80% of ongoing responses at 6 mo[121]. Among 27 patients with previously untreated 
NSCLC, the ORR was 70% with 58% of response ongoing at 6 mo. Praseltinib is 
currently being compared to the standard treatment approach of platinum-based 
chemotherapy ± pembrolizumab in RET-fusion positive NSCLC in the AcceleRET trial 
(NCT04222972)[122].

Other non-RET-selective TKIs have shown some activity in RET-fusion positive 
NSCLC: Cabozantinib for example displayed an ORR of 28% in a single-center, phase 
II trial, of patients with RET-rearranged NSCLC, of whom 75% had received prior 
chemotherapy[123]. In an international registry of patients with RET-rearranged 
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NSCLCs, cabozantinib, vandetanib, and sunitinib had rather limited activity, with 
overall response rates of 37%, 18%, and 22%, respectively[124].

Different mechanisms of RET-inhibition resistance have been described including 
the emergence of solvent front mutation in the RET-gene (e.g. in the RET G810 residue, 
in the kinase solvent front)[125] as well as acquired MET or KRAS amplifications[126].

CONCLUSION
Driver mutations have significantly altered the diagnostic work-up and reshaped the 
oncology treatment paradigm. Recently, several new driver mutations have been 
identified in metastatic NSCLC, with some leading to therapeutic success and others, 
failure. We have summarized the current landscape of actionable oncogenic alterations 
and their therapies in Table 1. A better understanding of the biology of various 
subtypes of each driver mutation will help not only to match the optimal treatment to 
each patient, but also elucidate their respective resistance mechanisms, allowing for 
greater precision medicine. Many trials are ongoing, some of them through serial 
tumor or plasma biopsies and multiplex molecular testing. The optimal targeted 
therapy sequence for each driver mutation is yet to be fully determined. Furthermore, 
it is unclear whether a multi-kinase inhibitor or highly selective therapy is the best 
choice for some alterations, though the latter tend to have more favourable toxicity 
profiles.

Given the portfolio of possible mutations and targeted therapies to offer, multiplex 
NGS testing should be standard practice. Barring a therapeutic emergency, no patient 
should be started on systemic therapy before a comprehensive molecular analysis has 
been completed. In the twentieth century, every gene matters, and it would be 
unethical to deny patients access to proven targeted therapies given the efficacy and 
favourable toxicity profile of such drugs.
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Table 1 Selected oncogenic drivers and their treatments in non-small cell lung cancer

Targeted therapy ORR PFS OS

Erlotinib1[40] 62%-83% 9.7-13.1 mo 19.3-26.3 mo

Gefitinib1[4] 73.7% 9.5 mo 22 mo

Afatinib1[5] 56%-67% 11.1 mo 25.8 mo

Dacomitinib1[127] 74.9% 14.7 mo 34 mo

EGFR

Osimertinib1[128] 80% 18.9 mo 38.6 mo

Crizotinib1[53] 75.5% 11 mo 57 mo

Ceritinib1[129] 72.5% 16.6 mo NA

Brigatinib0[130] 79% 24 mo NA

Alectinib1[131] 82.9% 35 mo NA

ALK

Lorlatinib1[54] 76% NA NA

Crizotinib1[132] 63-72% 15.9-19.2 mo 51 mo

Lorlatinib1[133] 62% 19.3 mo NA

ROS1

Entrectinib1[134] 77% 19 mo NA

BRAF Dabrafenib-trametinib1[135] 64% 10.9 mo 24.6 mo

Crizotinib[50] 32% 7.3 mo NA

Cabozantinib[136] NA NA NA

Capmatinib1[137] 68% 9.7 mo NA

MET

Tepotinib[138] 46% NA NA

Entrectinib1[139] 70% NA NANTRK

Larotrectinib1[140] 75% NA NA

Selpercatinib1[141] 85% NA NARET

Pralsetinib1[121] 70% NA NA

Sotorasib[142] 32.2% 10.2 mo NAKRAS

Adagrasib[143] 45% NA NA

HER2 Trastuzumab-deruxtecan[144] 62% 14 mo NA

NRG1 Afatinib[112] NA NA NA

1Food and Drug Administration approved. ORR: Objective response rate; PFS: Progression-free survival; OS: Overall survival; EGFR: Epidermal growth 
factor receptor; ALK: Anaplastic lymphoma kinase; ROS1: c-ROS oncogene 1; NTRK: Neurotrophic receptor tyrosine kinase; RET: Rearranged during 
transfection; KRAS: Kirsten rat sarcoma; HER2: Human epidermal growth factor 2; NRG1: Neuregulin-1; BRAF: V-raf murine sarcoma viral oncogene 
homolog B. NA: Not available.
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